
0018-9162/98/$10.00 © 1998 IEEE July 1998 33

Using the WinWin
Spiral Model:
A Case Study
Fifteen teams used the WinWin spiral model to prototype, plan, specify, and

build multimedia applications for USC’s Integrated Library System. The

authors report lessons learned from this case study and how they extended

the model’s utility and cost-effectiveness in a second round of projects.

A
t the 1996 and 1997 International Con-
ferences on Software Engineering, three
of the six keynote addresses identified
negotiation techniques as the most critical
success factor in improving the outcome

of software projects. At the USC Center for Software
Engineering, we have been developing a negotiation-
based approach to software system requirements engi-
neering, architecture, development, and management.
Our approach has three primary elements:

• Theory W, a management theory and approach,
which says that making winners of the system’s
key stakeholders is a necessary and sufficient con-
dition for project success.1

• The WinWin spiral model, which extends the spi-
ral software development model by adding Theory
W activities to the front of each cycle. The sidebar
“Elements of the WinWin Spiral Model” describes
these extensions and their goals in more detail.

• WinWin, a groupware tool that makes it easier
for distributed stakeholders to negotiate mutu-
ally satisfactory (win-win) system specifications.2

In this article, we describe an experimental valida-
tion of this approach, focusing on the application of
the WinWin spiral model. The case study involved
extending USC’s Integrated Library System to access
multimedia archives, including films, maps, and
videos. The Integrated Library System is a Unix-based,
text-oriented, client-server COTS system designed to
manage the acquisition, cataloging, public access, and
circulation of library material. The study’s specific goal
was to evaluate the feasibility of using the WinWin
spiral model to build applications written by USC
graduate student teams. The students developed the
applications in concert with USC library clients, who
had identified many USC multimedia archives that
seemed worthy of transformation into digitized, user-
interactive archive management services.

Co
m

pu
tin

g
Pr

ac
tic

es

Barry Boehm
Alexander
Egyed
Julie Kwan
Dan Port
Archita Shah
University of
Southern
California

Ray Madachy
Litton Data
Systems and
University of
Southern
California

The study showed that the WinWin spiral model is
a good match for multimedia applications and is likely
to be useful for other applications with similar char-
acteristics—rapidly moving technology, many candi-
date approaches, little user or developer experience
with similar systems, and the need for rapid comple-
tion. The study results show that the model has three
main strengths.

• Flexibility. The model let the teams adapt to accom-
panying risks and uncertainties, such as a rapid pro-
ject schedule and changing team composition.

• Discipline. The modeling framework was suffi-
ciently formal to maintain focus on achieving
three main, or “anchor-point,” milestones: the
life-cycle objectives, the life-cycle architecture, and
the initial operational capability. (Table A in the
sidebar describes these milestones.)

• Trust enhancement. The model provided a means
for growing trust among the project stakeholders,
enabling them to evolve from adversarial, con-
tract-oriented system development approaches

34 Computer

toward methods that were mutually supportive
and cooperative.

From lessons learned during the case study, we iden-
tified several possible enhancements, some of which
we made. We then used the enhanced model on 16
projects in the following year. The second-year pro-
jects overcame many of the weaknesses in the first-
year projects. We are incorporating improvements
identified by student critiques and are planning third-
year projects. Industry is also looking at the WinWin
spiral model. Companies such as Rational Inc. have
already adopted several elements of the WinWin spi-
ral model as part of their project management and
product life-cycle processes.

MODEL APPLICATION
We applied the WinWin spiral model in four cycles:

• Cycle 0. Determine the feasibility of an appro-
priate family of multimedia applications.

• Cycle 1. Develop life-cycle objectives (LCO mile-
stone), prototypes, plans, and specifications for indi-
vidual applications and verify the existence of at
least one feasible architecture for each application.

• Cycle 2. Establish a specific, detailed life-cycle
architecture (LCA milestone), verify its feasibil-
ity, and determine that there are no major risks in
satisfying the plans and specifications.

• Cycle 3. Achieve a workable initial operational
capability (IOC milestone) for each project

Elements of the WinWin
Spiral Model

The original spiral model1 uses a cyclic
approach to develop increasingly detailed
elaborations of a software system’s defin-
ition, culminating in incremental releases
of the system’s operational capability.
Each cycle involves four main activities:

• Elaborate the system or subsystem’s
product and process objectives, con-
straints, and alternatives.

• Evaluate the alternatives with respect
to the objectives and constraints.
Identify and resolve major sources of
product and process risk.

• Elaborate the definition of the prod-
uct and process.

• Plan the next cycle, and update the
life-cycle plan, including partition of
the system into subsystems to be
addressed in parallel cycles. This can
include a plan to terminate the pro-
ject if it is too risky or infeasible.
Secure the management’s commit-
ment to proceed as planned.

Since its creation, the spiral model has
been extensively elaborated2 and success-
fully applied in numerous projects.3,4

However, some common difficulties led
USC-CSE and its affiliate organizations to
extend the model to the WinWin spiral
model described in the main text.

Negotiation front end
One difficulty was determining where

the elaborated objectives, constraints, and
alternatives come from. The WinWin spi-
ral model resolves this by adding three
activities to the front of each spiral cycle,
as Figure A shows.5

• Identify the system or subsystem’s key
stakeholders.

• Identify the stakeholders’ win condi-
tions for the system or subsystem.

• Negotiate win-win reconciliations of
the stakeholders’ win conditions.

We have found in experiments with a
bootstrap version of the WinWin group-
ware tool that these steps do indeed pro-

duce the key product and process objec-
tives, constraints, and alternatives for the
next version.6 The model includes a stake-
holder WinWin negotiation approach that
is similar to other team approaches for
software and system definition such as
gIBIS, Viewpoints, Participatory Design,
and Joint Application Design. However,
unlike these and other approaches, we use
the stakeholder win-win relationship as the
success criterion and organizing principle
for software and system definition. Our
negotiation guidelines are based on the
Harvard Negotiation Project’s techniques.7

Process anchor points
Another difficulty in applying the spiral

model across an organization’s various pro-
jects was that the organization has no com-
mon reference points for organizing its
management procedures, cost and schedule
estimates, and so on. This is because the
cycles are risk driven, and each project has
different risks. In attempting to work out
this difficulty with USC-CSE’s industry and
government affiliates using our Cocomo II
cost model, we found a set of three process
milestones, or anchor points,8 which we
could relate to both the completion of spi-
ral cycles and to the organization’s major
decision milestones.

The life-cycle objectives (LCO) and the
life-cycle architecture (LCA) milestones rat-
ify the stakeholders’ commitment to a fea-
sible and consistent package of the six key
milestone elements shown in Table A for the
LCO anchor point.

The LCO version focuses on establishing
a sound business case for the package. It
need only show that there is at least one fea-
sible architecture.

The LCA version commits to a single
choice of architecture and elaborates it to the
point of covering all major sources of risk in
the system’s life cycle.8 The LCA is the most

1. Identify
 next-level
 stakeholders.

7. Review and
 commit.

6. Validate
 product
 and process
 definitions.

5. Define next
 level of product
 and process,
 including partitions.

4. Evaluate product and
 process alternatives.
 Resolve risks.

2. Identify stakeholders'
 win conditions.

3a. Reconcile win
 conditions.

3b. Establish next-
 level objectives,
 constraints, and
 alternatives.

Figure A. How the WinWin spiral model differs from the original spiral model. The new model adds
front-end activities (blue) that show where objectives, constraints, and alternatives come from. This
lets users more clearly identify the rationale involved in negotiating win conditions for the product.

including system preparation, training, use, and
evolution support for users, administrators, and
maintainers.

We used Theory W in all the cycles, but we used the
WinWin groupware tool in Cycle 1 only, because this
is where it currently works best.

Cycle 0: Application family
From 1993 to 1996, the USC Center for Software

Engineering (CSE) experimented with teaching the
WinWin spiral model in its master’s software engi-
neering course, taught by Barry Boehm. The experi-
ments involved using hypothetical applications, one
of which was an advanced library application. Some

of the library staff became interested in having the
CSE students develop useful USC library applications.

The CSE in turn had been looking for a source of
new applications on which to test the WinWin spiral
model. So in the summer of 1996 we met with some
of the library staff to explore respective win condi-
tions and to determine if we could identify a feasible
set of life-cycle objectives for a family of USC library
applications. Table 1 summarizes the win conditions
for the three primary stakeholders: the library infor-
mation technology community; the library operations
community (including users); and the CSE.

As the table indicates, the library information tech-
nology community was energized by their dean’s
vision to accelerate the libraries’ transition to digital

July 1998 35

Top-level system
objectives and scope
Environment
parameters and
assumptions
Evolution parameters

Operational concept
Operations and
maintenance
scenarios
and parameters
Organizational
life-cycle
responsibilities
(stakeholders)

Table A. Contents of the LCO milestone.

Milestone element
Definition of Definition of Definition of
operational system system and Definition of Feasibility System

concept requirements software architecture life-cycle plan rationale prototype(s)

critical milestone in the software system’s life
cycle. As an analogy, it is similar to the commit-
ment you make in getting married (just as LCO
is like getting engaged and IOC like having your
first child).

The initial operational capability, or IOC,
anchor point has three key elements:8

• Software preparation, including both
operational and support software with
appropriate commentary and documen-
tation; data preparation or conversion;
the necessary licenses and rights for
COTS and reused software, and appro-
priate operational readiness testing.

• Site preparation, including facilities,
equipment, supplies, and COTS vendor
support arrangements.

• User, operator, and maintainer prepara-
tion, including selection, team building,
training, and other qualifications for famil-
iarization use, operations, or maintenance.

We found that the LCO and LCA mile-
stones are highly compatible with the suc-
cessful architecture review board practice
pioneered by AT&T and Lucent Technolo-
gies.9 We used board sessions about 20 per-
cent of the time in the first-year projects and
100 percent of the time in the second-year
projects, with much better results.

References
1. B. Boehm, “A Spiral Model of Software

Development and Enhancement,” Computer,
May 1988, pp. 61-72.

2. “Process Engineering with the Evolutionary
Spiral Process Model: Version 01.00.06,”
Tech. Report SPC-93098-CMC, Software Pro-
ductivity Consortium, Herndon, Va., 1994.

3. W. E. Royce, “TRW’s Ada Process Model for
Incremental Development of Large Software
Systems,” Proc. 12th Int’l Conf. Software
Eng., IEEE CS Press, Los Alamitos, Calif.,
1990, pp. 2-11.

4. T. Frazier and J. Bailey, “The Costs and
Benefits of Domain-Oriented Software
Reuse: Evidence from the STARS Demon-
stration Projects,” IDA Paper P-3191, Insti-
tute for Defense Analyses, Alexandria, Va.,
1996.

5. B. Boehm and P. Bose, “A Collaborative Spi-
ral Software Process Model Based on Theory
W,” Proc. Int’l Conf. Software Process, IEEE
CS Press, Los Alamitos, Calif., 1994, pp. 59-
68.

6. B. Boehm et al., “Software Requirements as
Negotiated Win Conditions,” Proc. Int’l
Conf. Requirements Eng., IEEE CS Press, Los
Alamitos, Calif., 1994, pp. 74-83.

7. R. Fisher and W. Ury, Getting to Yes, Penguin
Books, New York, 1981.

8. B. Boehm, “Anchoring the Software Process,”
IEEE Software, July 1996, pp. 73-82.

9. “Best Current Practices: Software Architec-
ture Validation,” AT&T, Murray Hill, N.J.
1993.

Assurance of
consistency among
elements above
Via analysis,
measurement,
prototyping,
simulation, etc.
Business case
analysis for
requirements,
feasible
architectures

Top-level functions,
interfaces, quality
attribute levels,
including:
Growth vectors
Priorities

Stakeholders’
concurrence
on essentials

Top-level definition
of at least one feasible
architecture
Physical and logical
elements and
relationships
Choices of COTS and
reusable software
elements

Identification
of infeasible
architecture options

Identification of life-cycle
stakeholders
Users, customers,
developers, maintain-
ers, interoperators, gen-
eral public, others

Identification of life-cycle
process model
Top-level stages, incre-
ments
Top-level WWWWWHH
(Why, What, When,
Who, Where, How,
How Much?) by stage

Exercise key usage
scenarios

Resolve critical risks

36 Computer

capabilities. However, there was little budget for eval-
uating emerging multimedia technology and develop-
ing exploratory applications.

The library operations community and its users
were already undergoing a complex transition to the
new Integrated Library System. They were continu-
ally looking for new technology to enhance their oper-
ations. But they were also highly sensitive to the risks
of disrupting services, and they had limited resources
to experiment in new areas.

The biggest risk identified in Cycle 0 was the risk of
having too many different applications and losing con-
trol of the project. Achieving a meaningful IOC in two
semesters, a win condition for CSE, meant following a
rapid project schedule. Because the students would be
unfamiliar with both one another and with their library
applications and clients, they could easily go off in all
directions. We resolved this risk by focusing on a single
application area—library multimedia archive services—
and by developing a common domain model and set of
product guidelines for all teams to follow.

Cycle 1: Application life-cycle objectives
Figure 1 shows the project guidelines we negotiated

with the library staff during Cycle 0 and provided to
the CS students on the first day of class. The guidelines
allowed 2.5 weeks for the students to organize them-
selves into teams and 11.5 weeks to complete the life-
cycle objective and life-cycle architecture milestones.

We also gave each project some guidelines for de-
veloping five documents (in the artifacts list under
“Project Objectives” in Figure 1), including recom-
mended page budgets. Each team had to develop two
versions, one for the LCO milestone and an elabora-
tion for the LCA milestone. To ensure that everyone
used a common development process, we gave the
teams a sample multimedia archive prototype and a
domain model for a typical information archive exten-
sion. The domain model, in Figure 2, identifies the key
stakeholders involved in such systems and key con-
cepts like the system boundary, the boundary between
the system being developed and its environment.

The project guidelines and domain model were key

to the teams’ rapid progress because they provided a
common development perspective. The course lectures
followed the WinWin spiral model. We began with
overviews of the project artifacts (in Figure 1 under
“Project objectives”) and how they fit together. We
continued with a discussion of the key planning and
organizing guidelines. In later lectures, we provided
more detail on the project artifacts and had guest lec-
tures on library operations and the SIRSI system and
on technological aspects such as user interface design
and multimedia system architecture.

We focused each team during Cycle 1 by having
them use the WinWin groupware tool for requirements
negotiation.2 “WinWin user negotiations” in Figure 1
identifies the four key forms in the WinWin negotia-
tion model (win conditions, issues, options, and agree-
ments), and their relationships. It also summarizes the
stakeholder roles (developer, customer, and user) to be
played by the team members. To minimize disruption
to library operations, we had the operational concept
and requirements team members enter the user arti-
facts, rather than the librarians themselves.

Figure 3a shows the final list of applications and the
teams required to develop them. We ended up with 12
applications and 15 development teams, comprising
both on- and off-campus students. We let the project
teams select their own members to mitigate the risk
of forming teams with incompatible people and
philosophies. Most teams had six people.

Figure 3b shows two problem statements prepared
by the library clients. These statements are much less
detailed than a typical requirements set in an indus-
trial application. The team had to go from short state-
ments like this to a consistent set of prototypes, plans,
and specifications (typically 200 pages) in 11 weeks.

To help them organize and navigate the WinWin
artifacts and control the associated terminology, we
gave each team a domain taxonomy and guidelines
for relating the taxonomy elements to elements of the
requirements specification. Figure 4 shows part of the
taxonomy and guidelines.

Figure 5 shows the look and feel of the WinWin
tool. In the lower right is a win condition form entered

Table 1. Win conditions for the three primary stakeholders in the case study.

Library Information Technology Community Library Operations Community Center for Software Engineering

Similarity of projects (for fairness, project
management)

Reasonable match to the WinWin spiral model

15-20 projects at 5-6 students per team

Achieve a meaningful life-cycle architecture in
one semester

Achieve a meaningful initial operational capability
in two semesters

Adequate network, computer, and infrastructure
resources

Accelerated transition to digital library capabilities;
vision of Dean of the University Libraries

Evaluation of emerging multimedia archiving and
access tools

Empowering library multimedia users

Enhancement of library staff capabilities in digital
library services

Leveraging of limited budget for advanced applica-
tions

Continuity of service

No disruption of ongoing transition to
SIRSI-based Library Information System

Career growth opportunities for system
administrators

No disruption of USC network operations
and services

More efficient operations via technology

by one of the team members on the Hancock Library
photo archive project, expressing the need to accom-
modate future upgrades, such as different image for-
mats. The graph at the top shows how the win con-
dition “swong-WINC-5” is linked to other WinWin
forms such as issues, options, and agreements. The
taxonomy helps categorize these forms into common
concerns, such as those that affect user controls.

The WinWin negotiation period took longer than
we expected for several reasons. We underestimated

the amount of WinWin training needed and the com-
plexities of supporting 15 simultaneous negotiations,
some with mixes of on- and off-campus negotiators.
As a result, we moved the deadline for completing the
WinWin negotiations and the LCO packages back a
week. Fortunately, the LCO packages were good
enough to let us make up that time in the next cycle.

Under the revised schedule, all 15 teams delivered
their LCO packages on time. The degree of com-
pleteness was generally appropriate, but components

July 1998 37

Project objectives
Create the artifacts necessary to establish a successful life-cycle architecture and plan for adding a multimedia access capability to
the USC Library Information System. These artifacts are

1. An operational concept definition
2. A system requirements definition
3. A system and software architecture definition
4. A prototype of key system features
5. A life-cycle plan
6. A feasibility rationale, assuring the consistency and feasibility of items 1-5.

Team structure
Each of the six team members will be responsible for developing the LCO and LCA versions of one of the six project artifacts. In
addition, the team member responsible for the feasibility rationale will serve as project manager with the following primary
responsibilities:
• Ensure consistency among the team members’ artifacts (and document this in the rationale).
• Lead the team’s development of plans for achieving the project results and ensure that project performance tracks the plans.

Project approach
Each team will develop the project artifacts concurrently, using the WinWin spiral approach defined in the article “Anchoring the
Software Process.” There will be two critical project milestones: the life-cycle objectives (LCO) and life-cycle architecture (LCA).
The LCA package should be sufficiently complete to support development of an initial operational capability (IOC) version of the
planned multimedia access capability by a CS577b student team during the spring 1997 semester. The life-cycle plan should estab-
lish the appropriate size and structure of the development team.

WinWin user negotiations
Each team will work with a representative of a community of potential users of the multimedia capability (art, cinema, engineer-
ing, business, etc.) to determine that community’s most significant multimedia access needs and to reconcile these needs with a
feasible implementation architecture and plan. The teams will accomplish this reconciliation by using the USC WinWin groupware
support system for requirements negotiation. This system provides WinWin forms for stakeholders to express their win conditions
for the system, to define issues dealing with conflicts among win conditions, to support options for resolving the issues, and to con-
summate agreements to adopt mutually satisfactory (win-win) options.

There will be three stakeholder roles:
• Developer. The architecture and prototype team members will represent developer concerns, such as the use of familiar

packages, stability of requirements, availability of support tools, and technically challenging approaches.
• Customer. The plan and rationale team members will represent customer concerns, such as the need to develop an IOC in one

semester, limited budgets for support tools, and low-risk technical approaches.
• User. The operational concept and requirements team members will work with their designated user-community representative

to represent user concerns, such as particular multimedia access features, fast response time, friendly user interface, high reliabil-
ity, and flexibility of requirements.

Major milestones
September 16 All teams formed
October 14 WinWin negotiation results
October 21, 23 LCO reviews
October 28 LCO package due
November 4 Feedback on LCO package
December 6 LCA package due, individual critique due

Individual project critique
The project critique is to be done by each individual student. It should be about 3-5 pages, and should answer the question, “If we
were to do the project over again, how would we do it better—and how does that relate to the software engineering principles in
the course?”

Figure 1. Guidelines given to the 15 teams on how to conduct their respective multimedia archive projects. Because each project team received the same
guidelines, the teams were able to progress rapidly in specifying and building the applications.

38 Computer

often had serious inconsistencies in assumptions, rela-
tionships, and terminology. Most teams had planned
time for members to review each others’ artifacts, but
most individual members ended up using that time to
finish their artifacts. Some concepts—such as the
nature of the system boundary, organizational rela-
tionships, and the primary goal of the life-cycle plan—
caused problems for students without industrial expe-
rience. We covered these concepts in more depth in
subsequent course lectures.

Cycle 2: Application life-cycle architectures
In Cycle 2, the teams chose a specific life-cycle archi-

tecture for their applications and elaborated the con-
tent of their LCO artifacts to the level of detail
required for the LCA milestone. This included
responding to the instructors’ comments on their LCO
packages. The most frequent problems were incon-
sistencies among the artifacts, failure to specify qual-
ity attributes, a general misunderstanding about the

application’s scope (the system boundary in Figure 2a)
and the inability to recognize that the plan was to
focus on the development activities in Cycle 3.

Because of delays and changes in prototyping equip-
ment, the teams developed their prototypes in Cycle 2.
This had the unfortunate effect of destabilizing some
of the WinWin agreements and product requirements.
Once the library clients saw the prototypes, they
wanted to change the requirements (the IKIWISI—I’ll
know it when I see it—syndrome). In the following
year, we had the teams do the initial prototyping and
WinWin negotiations concurrently.

On the positive side, the prototypes generally
expanded the librarians’ perceptions of what the teams
could produce. The librarian who proposed the Edgar
corporate data problem was amazed with the end
product, which built on the seemingly simple text-for-
matting problem and delivered a one-stop Java site
that synthesized several kinds of business information.
She commented in her evaluation memo:

System block diagram
This diagram shows the usual block diagram for extensions providing access to new information archive assets from an existing
information archive (IA) system:

The system boundary focuses on the automated applications portion of the operation and defines such external entities as users,
operators, maintainers, assets, and infrastructure (campus networks, etc.) as part of the system environment. The diagram
abstracts out such additional needed capabilities as asset catalogs and direct user access to O&M support and asset managers.
Some stakeholder roles and responsibilities include:

• Asset managers. Furnish and update asset content and catalog descriptors. Ensure access to assets. Provide accessibility status
information. Ensure asset-base recoverability. Support problem analysis, explanation, training, instrumentation, operations
analysis.

• Operators. Maintain high level of system performance and availability. Accommodate asset and services growth and change.
Protect stakeholder privacy and intellectual property rights. Support problem analysis, explanation, training, instrumentation,
operations analysis.

• Users. Obtain training. Access system. Query and browse assets. Import and operate on assets. Establish, populate, update,
and access asset-related user files. Comply with system policies. Provide feedback on use.

• Application software maintainer. Perform corrective, adaptive, and perfective (tuning, restructuring) maintenance on software.
Analyze and support prioritization of proposed changes. Plan, design, develop, and verify selected changes. Support problem
analysis, explanation, training, instrumentation, and operations analysis.

• Service providers (network, database, or facilities management services). Roles and responsibilities similar to asset managers.

Figure 2. Domain
model for extending
an information
archive system. The
domain model and
the guidelines in Fig-
ure 1 helped give the
15 teams a unified
perspective of project
development.

IA system O & M support

New-asset access New assets

Existing IA system

IA system infrastructure

Users

New-asset
managers

Existing
assets

IA system infrastructure operations
and maintenance (O & M)

Existing-asset
managers

System boundary

July 1998 39

Team Application
1. Stereoscopic slides
2. Latin American pamphlets
3,5. Edgar corporate data
4. Medieval manuscripts
6,10. Hancock Library photo archive
7. Interactive TV courseware delivery
8,11. Technical reports archives
9. Student film archive
12. Student access to digital maps
13. Los Angeles regional history photos
14. Korean-American museum
15. Urban planning documents

(a)

Medieval manuscripts
I am interested in how to scan medieval manuscripts
so that a researcher could both read the content
and study the scribe’s hand, special markings, and so
on. A related issue is how to transmit such images.

Edgar corporate data
Increasingly the government is using the WWW as a
tool for dissemination of information. Two much-
used sites are the Edgar database of corporate infor-
mation (http://www.sec.gov/edgarhp.htm) and the
Bureau of the Census (http://www.census.gov). Part of
the problem is that some information (particularly
that at the Edgar site) is available only as ASCII files.
For textual information, the formatting of statistical
tables is often lost in downloading, e-mailing, or
transferring to statistical programs. While this infor-
mation is useful for the typical library researcher, it is
often too much trouble to put it in a usable format.

(b)

Figure 3. (a) Proposed
multimedia
applications and (b) two
problem statements
prepared by the library
clients. The numbers in
(a) designate the teams
that designed the appli-
cation. Because we had
15 teams and 12 appli-
cations, some library
clients agreed to work
with two teams. From
statements like those in
(b), the teams had to
generate detailed spec-
ifications in 11 weeks.

1. Operational Modes
1.1 Classes of Service (research, education, general public)
1.2 Training
1.3 Graceful Degradation and Recovery

2. Capabilities
2.1 Media Handled

2.1.1 Static (text, images, graphics, etc.)
2.1.2 Dynamic (audio, video, animation, etc.)

2.2 Media Operations
2.2.1 Query, Browse
2.2.2 Access
2.2.3 Text Operations (find, reformat, etc.)
2.2.4 Image Operations (zoom in/out, translate/rotate, etc.)
2.2.5 Audio Operations (volume, balance, forward/reverse, etc.)
2.2.6 Video/Animation Operations (speedup/slowdown, forward/reverse, etc.)
2.2.7 Adaptation (cut, copy, paste, superimpose, etc.)
2.2.8 File Operations (save, recall, print, record, etc.)
2.2.9 User Controls

2.3 Help
2.4 Administration

2.4.1 User Account Management
2.4.2 Use Monitoring and Analysis

3. Interfaces
3.1 Infrastructure (SIRSI, UCS, etc.)
3.2 Media Providers
3.3 Operators

4. Quality Attributes
...

The taxonomy serves as a requirements checklist and navigation aid:
The taxonomy elements map onto the requirements description table of contents in the course notes.
Every WinWin artifact should point to at least one taxonomy element (modify elements if appropriate).
Every taxonomy element should be considered as a source of potential stakeholder win conditions and
agreements.

Figure 4. Part of the
domain taxonomy and
use guidelines given to
each project team. The
taxonomy specializes the
WinWin tool to the
stakeholders’ domain,
and serves as a checklist
for completing the nego-
tiation process. It also
helped the teams orga-
nize the WinWin forms
and relate them to the
requirements specifica-
tion.

“[The team] obviously looked beyond the parameters
of the problem and researched the type of informa-
tion need the set of data meets. My interactions with
the team were minimal, not because of any difficulty,
but because as a group they had a synergy and
grasped the concepts presented to them. The solution
the team came up with was innovative, with the
potential to be applied to other, similar problems.”

Other library clients were also very satisfied with the

value added relative to their time invested.
The teams were able to surmount several chal-

lenges characteristic of real-world projects. For exam-
ple, they could not use the Integrated Library System’s
test server for their prototypes because it was needed
in transitioning from the old system to the new
Integrated Library System. There were also delays in
arranging for a suitable alternative Web server. At
times librarians could not provide input on critical
decisions, which led to extra rework. Inevitable per-

40 Computer

sonnel conflicts arose within the 15 teams. However,
we were able to minimize conflicts within a team, in
large part because the teams were self-selected.

The WinWin spiral model’s mix of flexibility and
discipline let the project teams adapt to these chal-
lenges while staying on schedule. In particular, the use
of risk management and a continuously evolving top
n risk list3 helped the teams focus their effort on the
most critical success factors for their projects.

Another difficulty was maintaining consistency across
multiple product views. The guidelines we gave the stu-
dents were from the course textbook,4 evolving com-
mercial standards like J-STD-016-1995, and object-ori-
ented methods, particularly the Booch method and
Object Modeling Technology. The views included sys-
tem block diagrams, requirements templates, use sce-
narios, physical architecture diagrams, class hierarchies,
object interaction diagrams, dataflow diagrams, state-
transition diagrams, data descriptions, and requirements
traceability relations. Each had its value, but the over-
all set was both an overkill and weakly supported by
integrated tools. In the following year, we used a more
concise and integrated set of views based on the Ratio-
nal Unified Modeling Language and tool set.5

Cycle 3: Initial operational capability
A major challenge for Cycle 3 was that many stu-

dents involved in Cycles 1 and 2 during the fall 1996
Software Engineering I course, which was a core course

for an MS in computer science, did not take Software
Engineering II in spring 1997 because it was not a core
course. Thus, we were able to continue only six pro-
jects during Cycle 3, involving 28 students and eight
applications. The projects that continued were driven
by the project experience of the students who reen-
rolled, rather than by the priorities of the librarians.

Only one team retained most of its LCO/LCA par-
ticipants for Cycle 3. The other teams had to work with
a mix of participants with varying project backgrounds.
This was particularly challenging when we had to inte-
grate teams that had produced different LCA artifacts
for the same application. In two cases, the instructors
had to persuade students to join different teams because
they continued to fight about whose architecture was
better. Other conflicts developed within teams in which
some members had extensive LCA experience on the
application and others had none. In one case, experi-
enced members exploited those less experienced; in
another case, the reverse happened.

Other challenges included changes in course in-
structor, process model (spiral to risk-driven water-
fall), and documentation approach (laissez-faire to
put-everything-on-the-Web). There were also infra-
structure surprises: the Integrated Library System’s
server and search engine, which we expected to be
available for Cycle 3, were not.

Risk management. Despite these obstacles, each pro-
ject successfully delivered its IOC package—code, life-

Figure 5. Sample
screens from the
WinWin groupware
tool. The artifact
rationale window
(upper left) lets users
immediately see
links among the pro-
ject stakeholders’ win
conditions, issues,
options, and negoti-
ated agreements. The
screen in the lower
right expands one of
these forms, a stake-
holder’s win
condition. The current
negotiation outline is
the taxonomy window
(middle right) and the
latest changes are
listed in the message
window (bottom left).

cycle documentation, and demonstrations—on time.
We believe a major reason was our strong emphasis
on risk management, which enabled teams to depart
from a pure waterfall approach to resolve whatever
critical risk items surfaced. We had each team form a
top-n risk list, which helped them characterize each
cycle and gave everyone a flavor of what to expect.

The risk list helped the team prioritize risks by
assessing risk exposure (probability of loss times mag-
nitude of loss). Each week, the team reassessed the risk
to see if its priority had changed or to determine how
much progress had been made in resolving it. A key
strategy was design to schedule, in which a team iden-
tified a feasible core capability and optional features
to be implemented as the schedule permitted.

Some risks from a typical team risk list included

• Tight schedule. Risk aversion options included
studying the requirements carefully so as not to
overcommit, descoping good-to-have features
if possible, and concentrating on core capabil-
ities. Risk monitoring activities included closely
monitoring all activities to ensure that sched-
ules are met.

• Project size. Risk aversion options included
descoping good-to-have features and capabilities
if requirements were too excessive and identify-
ing the core capabilities to be built.

• Finding a search engine. Risk aversion options
included conducting a software evaluation of
search engines, actively sourcing free search
engines for evaluation and selection, and deter-
mining the best one for the project. Risk moni-
toring activities included submitting evaluation
reports and conducting demonstrations so that
an informed decision can be made.

• Required technical expertise lacking. Risk aver-
sion options included identifying the critical and
most difficult technical areas of the project and
having team members look into them as soon as
possible. Monitoring activities included closely
following the progress of critical problems and
seeking help if necessary.

Client involvement and reaction. The librarians’
involvement with the student teams during the second
semester was, for the most part, qualitatively and
quantitatively different than during the first semester.
Major system requirements had already been negoti-
ated, but there were a few new requirements that
added subtle differences to the original concepts.
Nonetheless, the time required for the librarians’ par-
ticipation was not as extensive as it had been.

Except for one project, the librarians were
delighted with the final presentations. Five library
clients wanted either to adopt the application as is or
extend it for possible adoption. The sixth applica-

tion—the only one not well received—was an
attempt to integrate the three photographic-
image projects (stereoscopic slides, Hancock
Library photo archive, Los Angeles regional
history photos) into a single application. The
team had only a short time to patch together
pieces of three architectures and user interfaces.
Some resulting features were good (a colored-
glasses stereo capability with good resolution,
for example), but none of the clients were
enthusiastic about implementing the results.

The librarians expressed that working with
Theory W and the WinWin philosophy made it
easy for them to “think big” about their pro-
jects. The negotiation process balanced that
vision by allowing teams and librarians to agree on a
feasible set of deliverables for the final products dur-
ing the academic session. And, although the time com-
mitment was not great, participation in this project let
the librarians focus part of their time on multimedia
applications and software engineering. One of the
greatest advantages for librarians was that they
became more familiar with digital library issues and
the software engineering techniques involved in their
implementation.

Nature of products. As one librarian noted in her
evaluation memo

The interaction between the student teams and the
librarians produced obvious differences in products
designed for different users. For example, the techni-
cal reports interface mirrored the technical nature of
the type of material included and expected future
users of the system, while the student film archive
interface reflected the needs and interests of a very
different clientele.

Figure 6, the user interface for the medieval manu-
scripts application, typifies the look and feel of the
products. The Netscape-based application uses vari-
ous windows to display the manuscript’s attributes,
to query for desired manuscripts using a search engine,
and to enter and catalog new manuscripts.

Adoption of applications. The students spent summer
1997 refining two of the five applications. However,
only one of these—the student film archive—was actu-
ally implemented. As it turned out, this application was
the only one with sufficient budget, people, and facil-
ities to sustain the product after it was implemented. In
the following year, we agreed to let the USC library
choose which applications would be developed to IOC
in spring 1998, and we agreed that we would imple-
ment only the applications the client could sustain.

LESSONS LEARNED
When we started the course, we were not sure about

any of our choices on such issues as team size, docu-

July 1998 41

The librarians said
that working with
Theory W and the

WinWin philosophy
made it easy
for them to

“think big” about
their projects.

42 Computer

ment guidelines, tools, milestones, and course mater-
ial. However, the library clients and management
found the projects sufficiently valuable that they com-
mitted both to a continued series of similar projects
and to supporting the product’s transition and sus-
taining it after implementation. We, in turn, obtained
extensive data and feedback on how to improve the
course and project approach both for future courses
and for industrial practice.

Number of cycles. For projects of this size, using a
single cycle each for the LCO and LCA milestones was
about right. Smaller projects can get to the LCA mile-
stone in a single cycle; larger projects may take several
cycles to achieve their LCO and LCA goals. Given the
results of our LCO reviews, using a single cycle would
have produced less satisfactory results in about half
the projects. In several projects, the detail was not bal-
anced in either the archiving or query/browsing parts
of the LCO packages; the LCA cycle let them correct
that imbalance. Using three cycles to produce the LCO
and LCA milestones would have left insufficient time
to both produce and coordinate three sets of artifacts.

Degree of flexibility. The teams were able to adapt to
real-world conditions, such as pleasant and unpleas-
ant surprises with COTS packages, the unavailability
of expected infrastructure packages such as the server,
lack of expertise on library information systems; and
personnel complications. More formal or contract-
oriented approaches would not have been able to
accommodate these changes in the short time (11
weeks) available.

Communication and trust. We found that, at least for
this type of application, the most important outcome
of product definition is not a rigorous specification,
but a team of stakeholders with enough trust and
shared vision to adapt effectively to unexpected

changes. In the beginning, the library clients were con-
siderably uncertain about going forward with the pro-
jects. By the LCA milestone, however, the uncertainty
and doubt about working with the student teams had
been replaced with enthusiasm and considerable trust,
although many were still uncertain about the appli-
cations’ technical parameters. This growth continued
through the development period and led to a mutual
commitment to pursue additional projects in the fol-
lowing year. The ability of the WinWin approach to
foster trust was consistent with earlier experiences.6

Smooth transitions. In previous uses of the WinWin
spiral model, the transition from WinWin stakeholder
agreements to requirements specifications had been
rough. The WinWin groupware tool helped smooth
this transition. Mapping the WinWin domain taxon-
omy onto the table of contents of the requirements
specification and requiring the use of the domain tax-
onomy as a checklist for developing WinWin agree-
ments effectively focused stakeholder negotiations.
We are exploring how to automate parts of the
requirements transition to make it even smoother.

Use of developer time. Although our approach
avoided some inefficiencies, we still experienced sig-
nificant bottlenecks from documentation overkill and
attempts to coordinate multiple views. The second-
year projects (described later) had less redundant and
voluminous documentation, used the Rational Rose
integrated object-oriented tool set (which decreased
the amount of documentation), and thus yielded fewer
inconsistencies. We also had five instead of six mem-
bers per team, which reduced inconsistencies and over-
head because fewer people had to talk to one another.

Finally, we added training and opportunities for feed-
back. The WinWin groupware tool helped with team
building and feature prioritization, but people needed

Figure 6. The user
interface for the
medieval manuscripts
application in Figure
3a. The application
satisfies the client’s
need to scan medieval
manuscripts in a way
that permits
researchers to simul-
taneously study spe-
cial markings and
read historical data
about the image.

more preliminary training and experience in its use. Stu-
dents also cited the need for more training on key Web
skills and more feedback on intermediate products. For
the second-year projects, we added homework exam-
ples both on WinWin principles and preliminary use.
We set up special sessions for training on WinWin and
Web prototyping. We also set up special LCO and LCA
architectural review board sessions for all projects,
rather than just three in-class sessions.

Client acceptance. We learned two lessons here. The
first is don’t finish negotiations before prototyping. If
you do, the agreements destabilize once the clients see
the prototypes. In the second-year projects, we had the
teams negotiate and prototype concurrently. The sec-
ond lesson is make sure the clients are empowered to
support the product not just with knowledge and enthu-
siasm, but also with resources for the product’s opera-
tion and maintenance. In the second-year projects, this
became our top criterion for selecting applications.

RESULTS OF SECOND-YEAR PROJECTS
In the second-year projects, which we just com-

pleted, 16 teams developed similar library-related pro-
jects. The process of the second year followed the
process of the first year for the most part (from the
LCO to LCA to IOC milestones). The changes we
made reflected customer and student wishes, their sug-
gestions, and other lessons learned during the first year.

From the 16 projects in the first semester, the clients
selected five applications for development according
to the library’s commitment to sustain them after the
second semester (IOC). Four are now transitioning to
library operations, and the fifth has good prospects
for transition after refinement this summer. We
adapted several parts of the first-year process in the
second-year projects.

Documentation. We restructured the document
guidelines to reduce duplication, and to adapt them
for use with Rational Rose and the Unified Modeling
Language (we had used OO development and design
methods the first year but we did not provide partic-
ular tool support for it). The average length of the
LCO package decreased from 160 pages in the first-
year projects to 103 in the second year.

Layered architectural description. Using UML and
Integrated Systems Development Methodology
(ISDM)7 as our object-oriented methods, we were able
to more strongly refine our system software architec-
tural description into three model layers: domain
description, system analysis, and system design. Each
layer was analogous to the others, but had a different
intended audience. The layering improved internal
consistency because it maintained distinct relations
(documented via simple reference tracing) between the
views within and outside each layer. Many teams still
found the concepts of consistency and tracing difficult
to grasp, but they were more aware than in the first-

year projects that these issues were important.
Through the domain description, the teams
were able to rapidly understand the parts of
their client’s domain that were relevant to the
target system. With this intermediate represen-
tation, the teams were able to work with the
client to communicate vital responsibilities,
qualities, and components of the target system
without losing the client in too much technical
design detail. During system analysis, one client
commented “I can really see that this [the sys-
tem] has all the things I expected and is what I
wanted.” In all, layering helped manage the
architectural complexity by letting teams cap-
ture, validate, and refine information in a prac-
tical and useful way as well as communicate
them effectively.

Client acceptance. The extra WinWin and
prototyping preparation and training, early pro-
totyping, and adoption of LCO and LCA review
boards fit naturally into the WinWin spiral
approach and increased the productiveness and qual-
ity of the second-year projects over the first-year efforts.
There were fewer requirements breakdowns in the later
stages of the life cycle, which increased client partici-
pation and acceptance to the point of “client activism.”
Indeed, when a team was given some criticism by the
review board, often the client would actively defend
the team and their efforts. The resulting discussions
often led to identifying additional important objectives,
constraints, and alternatives, making the spiral model
iterations more effective, and producing more satis-
factory products for the clients. The overall satisfac-
tion rating from client critiques, on a scale of 1 to 5,
went from 4.3 in the first year to 4.7 in the second.

We are currently addressing improvements
for the third year of projects. Of the 80 stu-
dents in the second-year projects, 26 indi-

cated the need for more UML and Rose education (18
indicated that UML and Rose were very helpful), 13
indicated the need for better document guidelines,
and nine indicated the need for a Cocomo II model
calibrated to the student projects.

We believe our results so far indicate that the WinWin
spiral model will transition well to industry use. The
digital library projects were in a sense an industry test
because about 20 percent of the teams were purely
industry employees, and additional teams had mixes of
industry employees and full-time students. In fact, since
the first-year projects, industrial organizations have
adopted many elements of the WinWin spiral model.
Rational, for example, has adopted the LCO, LCA, and
IOC definitions as the major milestones in their
Objectory or Rational Unified Management Process.8,9

MCC is developing an industrial-grade version of the
WinWin tool as part of its Software and System

July 1998 43

We found that the
most important

outcome of product
definition is not

a rigorous
specification,
but a team of

stakeholders with
enough trust and
shared vision to
adapt effectively

to unexpected
changes.

44 Computer

Engineering Productivity project. Several other
USC-CSE affiliate organizations are adopting
WinWin spiral model concepts into their life-
cycle process approaches. TRW has also suc-
cessfully scaled up the model in its CCPDS-R
project,9 in which it delivered a million-line com-
mand and control system within budget and
schedule—an effort considered a showcase pro-
ject by its Air Force client.

New software process models generally take
years to validate. The original spiral model was
created in 1978, first tried on a 15-person inter-

nal project in 1980, scaled up to a 100-person contract
project in 1988, and became a fully documented
method in 1994. For the WinWin spiral model, we were
fortunate to find this family of multimedia applications
that has let us continue validation and improvement on
a one-year cycle. As we refine the model and its atten-
dant processes, and as more of our industry affiliates
begin using the model, we hope to amass even more
concrete validation data.❖

Acknowledgments
This research is sponsored by DARPA through Rome Lab-
oratory under contract F30602-94-C-0195 and by the affil-
iates of the USC Center for Software Engineering: Allied Sig-
nal, Bellcore, Boeing, Electronic Data Systems, Federal
Aviation Administration, GDE Systems, Hughes Aircraft,
Interactive Development Environments, Institute for Defense
Analysis, Jet Propulsion Laboratory, Litton Data Systems,
Lockheed Martin, Loral Federal Systems, MCC, Motorola,
Network Programs, Northrop Grumman, Rational Soft-
ware, Raytheon Science Applications International, Soft-
ware Engineering Institute, Software Productivity Consor-
tium, Sun Microsystems, TI, TRW, USAF Rome Laboratory,
US Army Research Laboratory, and Xerox. We also thank
Denise Bedford, Anne Curran, Simei Du, Ellis Horowitz,
Ming June Lee, Phil Reese, Bill Scheding, and Nirat Shah
for support in key areas.

References
1. B. Boehm and R. Ross, “Theory W Software Project

Management: Principles and Examples,” IEEE Trans.
Software Eng., July 1989, pp. 902-916.

2. B. Boehm et al., “Cost Models for Future Software
Processes: COCOMO 2.0,” Annals Software Eng., Vol.
1, 1995, pp. 57-94.

3. B. Boehm, “Software Risk Management: Principles and
Practices,” IEEE Software, Jan. 1991, pp. 32-41.

4. I. Sommerville, Software Engineering, 5th ed., Addison-
Wesley, Reading, Mass., 1996.

5. G. Booch, I. Jacobson, and J. Rumbaugh, “The Unified
Modeling Language for Object-Oriented Development,”
Ver. 1.0, Rational Software Corp., Santa Clara, Calif., 1997.

6. B. Boehm and P. Bose, “A Collaborative Spiral Software
Process Model Based on Theory W,” Proc. Int’l Conf.
Software Process, IEEE CS Press, Los Alamitos, Calif.,

1994, pp. 59-68.
7. D. Port, “Integrated Systems Development Methodol-

ogy,” Telos Press, 1998 (to appear).
8. “Rational Objectory Process,” Ver. 4.1, Rational Soft-

ware Corp., Santa Clara, Calif., 1997.
9. W.E.Royce, Unified Software Management, Addison-

Wesley, Reading, Mass., 1998 (to be published).

Barry Boehm is the TRW professor of software engi-
neering and director of the Center for Software Engi-
neering at the University of Southern California. His
current research involves the WinWin groupware sys-
tem for software requirements negotiation, architec-
ture-based models of software quality attributes, and
the Cocomo II cost-estimation model. Boehm received
a PhD in mathematics from the University of Cali-
fornia at Los Angeles. He is an AIAA fellow, an ACM
fellow, an IEEE fellow, and a member of the National
Academy of Engineering.

Alexander Egyed is a PhD student at USC’s Center
for Software Engineering. His research interests are
in software architecture and requirements negotiation.
He received an MS in computer science from USC and
is a student member of the IEEE.

Julie Kwan is executive and research programs librar-
ian for the Marshall School of Business, Information
Services Division at USC. Her interests include infor-
mation needs and information-seeking behaviors;
business, scientific, and technical information trans-
fer; and customer-analysis methodologies. She
received an MS in library science from the University
of Illinois and is a member of the American Library
Association, the Medical Library Association, and the
Special Libraries Association.

Dan Port is a research assistant professor at USC and
a research associate with the Center for Software Engi-
neering. His primary research interests are in compo-
nent and object-oriented architectures, systems inte-
gration, and partially ordered event structures. He
received a PhD in applied mathematics at the Massa-
chusetts Institute of Technology.

Ray Madachy is the manager of the Software Engi-
neering Process Group at Litton Guidance and Con-
trol Systems and an adjunct assistant professor of
computer science at USC. He received a PhD in indus-
trial and systems engineering from USC. He is a mem-
ber of the IEEE, ACM, and the International Coun-
cil in Systems Engineering.

Contact the authors through Egyed at the Center for
Software Engineering, USC, Los Angeles, CA 90089-
0781; aegyed@sunset.usc.edu.

We believe our
results so far

indicate that the
WinWin spiral model
will transition well

to industry use.

